RAGChain Docs
  • Introduction
  • Quick Start
  • Installation
  • RAGchain Structure
    • File Loader
      • Dataset Loader
        • Ko-Strategy-QA Loader
      • Hwp Loader
      • Rust Hwp Loader
      • Win32 Hwp Loader
      • OCR
        • Nougat Loader
        • Mathpix Markdown Loader
        • Deepdoctection Loader
    • Text Spliter
      • Recursive Text Splitter
      • Markdown Header Splitter
      • HTML Header splitter
      • Code splitter
      • Token splitter
    • Retrieval
      • BM25 Retrieval
      • Hybrid Retrieval
      • Hyde Retrieval
      • VectorDB Retrieval
    • LLM
    • DB
      • MongoDB
      • Pickle DB
    • Reranker
      • BM25 Reranker
      • UPR Reranker
      • TART Reranker
      • MonoT5 Reranker
      • LLM Reranker
    • Benchmark
      • Auto Evaluator
      • Dataset Evaluators
        • Qasper
        • Ko-Strategy-QA
        • Strategy-QA
        • ms-marco
  • Utils
    • Query Decomposition
    • Evidence Extractor
    • Embedding
    • Slim Vector Store
      • Pinecone Slim
      • Chroma Slim
    • File Cache
    • Linker
      • Redis Linker
      • Dynamo Linker
      • Json Linker
    • REDE Search Detector
    • Semantic Clustering
  • Pipeline
    • BasicIngestPipeline
    • BasicRunPipeline
    • RerankRunPipeline
    • ViscondeRunPipeline
  • For Advanced RAG
    • Time-Aware RAG
    • Importance-Aware RAG
Powered by GitBook
On this page
  • Why RAGchain?
  • OCR Loaders
  • Reranker
  • Great to use multiple retrievers
  • pre-made RAG pipelines
  • Easy benchmarking
  • Compatibility with Langchain
  • Resources

Introduction

Build powerful RAG workflows with LLM, compatible with Langchain.

NextQuick Start

Last updated 1 year ago

RAGchain is a framework for developing advanced RAG(Retrieval Augmented Generation) workflow powered by LLM (Large Language Model). While existing frameworks like Langchain or LlamaIndex allow you to build simple RAG workflows, they have limitations when it comes to building complex and high-accuracy RAG workflows.

RAGchain is designed to overcome these limitations by providing powerful features for building advanced RAG workflow easily. Also, it is partially compatible with Langchain, allowing you to leverage many of its integrations for vector storage, embeddings, and document loaders.

Why RAGchain?

RAGchain offers several powerful features for building high-quality RAG workflows:

OCR Loaders

Simple file loaders may not be sufficient when trying to enhance accuracy or ingest real-world documents. OCR models can scan documents and convert them into text with high accuracy, improving the quality of responses from LLMs.

Reranker

Reranking is a popular method used in many research projects to improve retrieval accuracy in RAG workflows. Unlike LangChain, which doesn't include reranking as a default feature, RAGChain comes with various rerankers.

Great to use multiple retrievers

In real-world scenarios, you may need multiple retrievers depending on your requirements. RAGchain is highly optimized for using multiple retrievers. It divides retrieval and DB. saves vector representation of contents, and saves contents. We connect both with Linker, so it is really easy to use multiple retrievers and DBs.

pre-made RAG pipelines

We provide pre-made pipelines that let you quickly set up RAG workflow. We are planning to make much complex pipelines, which hard to make but powerful. With pipelines, you can build really powerful RAG system quickly and easily.

Easy benchmarking

It is crucial to benchmark and test your RAG workflows. We have easy benchmarking module for evaluation. Support your own questions and various datasets.

Compatibility with Langchain

Langchain's speciality is amount of integrations they made. RAGchain uses that power, and focus on only RAG system quality and efficiency.

Resources

You can use , , , at RAGchain. Three of them are compatible with RAGchain. Don't worry about lack of integrations that new framework is commonly suffered.

You can start our framework with .

And check out our if you need to find out more about RAGchain.

Plus, feel free to visit our and contribute!

Retrieval
DB
Document Loaders
Vector Stores
Embedding Models
LLM Models
API documentation
github repo
Quick Start