RAGChain Docs
  • Introduction
  • Quick Start
  • Installation
  • RAGchain Structure
    • File Loader
      • Dataset Loader
        • Ko-Strategy-QA Loader
      • Hwp Loader
      • Rust Hwp Loader
      • Win32 Hwp Loader
      • OCR
        • Nougat Loader
        • Mathpix Markdown Loader
        • Deepdoctection Loader
    • Text Spliter
      • Recursive Text Splitter
      • Markdown Header Splitter
      • HTML Header splitter
      • Code splitter
      • Token splitter
    • Retrieval
      • BM25 Retrieval
      • Hybrid Retrieval
      • Hyde Retrieval
      • VectorDB Retrieval
    • LLM
    • DB
      • MongoDB
      • Pickle DB
    • Reranker
      • BM25 Reranker
      • UPR Reranker
      • TART Reranker
      • MonoT5 Reranker
      • LLM Reranker
    • Benchmark
      • Auto Evaluator
      • Dataset Evaluators
        • Qasper
        • Ko-Strategy-QA
        • Strategy-QA
        • ms-marco
  • Utils
    • Query Decomposition
    • Evidence Extractor
    • Embedding
    • Slim Vector Store
      • Pinecone Slim
      • Chroma Slim
    • File Cache
    • Linker
      • Redis Linker
      • Dynamo Linker
      • Json Linker
    • REDE Search Detector
    • Semantic Clustering
  • Pipeline
    • BasicIngestPipeline
    • BasicRunPipeline
    • RerankRunPipeline
    • ViscondeRunPipeline
  • For Advanced RAG
    • Time-Aware RAG
    • Importance-Aware RAG
Powered by GitBook
On this page
  • Overview
  • Usage
  1. Utils
  2. Slim Vector Store

Pinecone Slim

PineconeSlim Class Documentation

PreviousSlim Vector StoreNextChroma Slim

Last updated 1 year ago

Overview

The PineconeSlim class is a slim vector store of , optimized for RAGchain.

Usage

Its usage is similar to Langchain's class. Due to its inheritance to class, you can use any function in class. Plus, you can initialize with class initializer.

For the optimal utilization of PineconeSlim VectorStore, developers are strongly recommended to employ the add_passages() method when saving passages. The use of alternative methods may not fully leverage the capabilities and advantages inherent in Slim VectorStore.

Here is a basic example:

import pinecone
from RAGchain.utils.vectorstore import PineconeSlim
from RAGchain.utils.embed import EmbeddingFactory

index = pinecone.Index(index_name="your_index_name")

# Initialize PineconeSlim
pinecone_slim = PineconeSlim(
    index=index,
    embedding=EmbeddingFactory('openai').get(),
    text_key="text",
    namespace="your_namespace"
)

# add passage to PineconeSlim
passages =[...list_of_passages...] # Assume we have list_of_passages retrieved earlier
pinecone_slim.add_passages(passages)
Pinecone
Pinecone
Pinecone
Pinecone
Pinecone