RAGChain Docs
  • Introduction
  • Quick Start
  • Installation
  • RAGchain Structure
    • File Loader
      • Dataset Loader
        • Ko-Strategy-QA Loader
      • Hwp Loader
      • Rust Hwp Loader
      • Win32 Hwp Loader
      • OCR
        • Nougat Loader
        • Mathpix Markdown Loader
        • Deepdoctection Loader
    • Text Spliter
      • Recursive Text Splitter
      • Markdown Header Splitter
      • HTML Header splitter
      • Code splitter
      • Token splitter
    • Retrieval
      • BM25 Retrieval
      • Hybrid Retrieval
      • Hyde Retrieval
      • VectorDB Retrieval
    • LLM
    • DB
      • MongoDB
      • Pickle DB
    • Reranker
      • BM25 Reranker
      • UPR Reranker
      • TART Reranker
      • MonoT5 Reranker
      • LLM Reranker
    • Benchmark
      • Auto Evaluator
      • Dataset Evaluators
        • Qasper
        • Ko-Strategy-QA
        • Strategy-QA
        • ms-marco
  • Utils
    • Query Decomposition
    • Evidence Extractor
    • Embedding
    • Slim Vector Store
      • Pinecone Slim
      • Chroma Slim
    • File Cache
    • Linker
      • Redis Linker
      • Dynamo Linker
      • Json Linker
    • REDE Search Detector
    • Semantic Clustering
  • Pipeline
    • BasicIngestPipeline
    • BasicRunPipeline
    • RerankRunPipeline
    • ViscondeRunPipeline
  • For Advanced RAG
    • Time-Aware RAG
    • Importance-Aware RAG
Powered by GitBook
On this page
  • Overview
  • Usage
  1. RAGchain Structure
  2. Reranker

UPR Reranker

PreviousBM25 RerankerNextTART Reranker

Last updated 1 year ago

Overview

The UPRReranker class is a reranker based on paper called "". It uses a language model to generate a question based on the passage and reranks the passages by the likelihood of the question.

It can enhance accuracy because it calculates likelihood original passages and related passages (generated) with user's question. Also, it is cost-effective than because it doesn't generate whole passages.

Usage

To initialize an instance of UPRReranker:

from RAGchain.reranker import UPRReranker

# if use gpu
reranker = UPRReranker(use_gpu=True)

To rank given set of passages:

query ="What causes global warming?"
passages =[...list_of_passages...] # Assume we have list_of_passages retrieved earlier

reranked_passages= reranker.rerank(query=query, passages=passages)
print(reranked_passages)
Improving Passage Retrieval with Zero-shot Question Generation
LLM Reranker