RAGChain Docs
  • Introduction
  • Quick Start
  • Installation
  • RAGchain Structure
    • File Loader
      • Dataset Loader
        • Ko-Strategy-QA Loader
      • Hwp Loader
      • Rust Hwp Loader
      • Win32 Hwp Loader
      • OCR
        • Nougat Loader
        • Mathpix Markdown Loader
        • Deepdoctection Loader
    • Text Spliter
      • Recursive Text Splitter
      • Markdown Header Splitter
      • HTML Header splitter
      • Code splitter
      • Token splitter
    • Retrieval
      • BM25 Retrieval
      • Hybrid Retrieval
      • Hyde Retrieval
      • VectorDB Retrieval
    • LLM
    • DB
      • MongoDB
      • Pickle DB
    • Reranker
      • BM25 Reranker
      • UPR Reranker
      • TART Reranker
      • MonoT5 Reranker
      • LLM Reranker
    • Benchmark
      • Auto Evaluator
      • Dataset Evaluators
        • Qasper
        • Ko-Strategy-QA
        • Strategy-QA
        • ms-marco
  • Utils
    • Query Decomposition
    • Evidence Extractor
    • Embedding
    • Slim Vector Store
      • Pinecone Slim
      • Chroma Slim
    • File Cache
    • Linker
      • Redis Linker
      • Dynamo Linker
      • Json Linker
    • REDE Search Detector
    • Semantic Clustering
  • Pipeline
    • BasicIngestPipeline
    • BasicRunPipeline
    • RerankRunPipeline
    • ViscondeRunPipeline
  • For Advanced RAG
    • Time-Aware RAG
    • Importance-Aware RAG
Powered by GitBook
On this page
  • Overview
  • Example Use
  1. RAGchain Structure
  2. Benchmark
  3. Dataset Evaluators

Strategy-QA

Overview

StartegyQA is a open-domain question answering dataset based on Wikipedia articles. It contains questions and answers about Wikipedia articles. Also, all questions are multi-hop question, which needs to retrieve multiple paragraphs to answer the question. It is great for evaluating performance of your pipeline's reasoning ability. Currently, we do not support answer evaluation for this dataset, because all answer type in this dataset is True/False. You can easily access answer of each question using EvaluateResult.each_results property.

Example Use

from RAGchain.benchmark.dataset import StrategyQAEvaluator

pipeline = <your pipeline>
retrievals = [<your retrieval>]
db = <your db>

evaluator = StrategyQAEvaluator(pipeline, evaluate_size=20)
evaluator.ingest(retrievals, db) # ingest dataset to db and retrievals
result = evaluator.evaluate()

# print result summary (mean values)
print(result.results)
# print result DataFrame
print(result.each_results)
PreviousKo-Strategy-QANextms-marco

Last updated 1 year ago